
 www.blacksnwhite.com

black N White black N White

NAME

ROLL
NUMBER

SEMESTER 2nd

COURSE CODE DCA1210

COURSE NAME BCA

Subject Name OBJECT-ORIENTED PROGRAMMING USING C ++

 www.blacksnwhite.com

Q.1) Describe the main differences between procedural programming in C
and object-oriented programming in C++.

Answer .:-
Procedural programming in C and object-oriented programming (OOP) in C++ are two
different approaches to writing and organizing computer programs. Although C++ is based
on C, it adds several powerful features that support object-oriented programming. Below are
the key differences between these two paradigms:
1. Programming Paradigm

 C follows a procedural programming approach, where the focus is on writing
procedures or functions that operate on data.

 C++ supports object-oriented programming, which is centered around objects —
entities that combine data and behavior.

2. Code Organization
 In C, the code is divided into functions. These functions take input, process it, and

return output.
 In C++, the code is organized into classes and objects. Classes define data and the

functions (methods) that operate on that data.
3. Data Handling

 C uses structured data types like arrays, structures, and pointers to handle data, and
data is typically exposed globally.

 C++ promotes data encapsulation, which means internal data is hidden within
objects and accessed through public methods.

4. Encapsulation
 C has no direct support for encapsulation. Data and functions are generally separate.
 C++ provides encapsulation through access specifiers like private, public, and

protected, controlling how data and functions are accessed.
5. Inheritance

 C does not support inheritance. Code reuse is managed manually by copying or
rewriting code.

 C++ supports inheritance, allowing new classes to inherit properties and behaviors
from existing classes, improving code reuse and scalability.

6. Polymorphism
 C lacks built-in support for polymorphism. Function behavior is usually fixed at

compile time.
 C++ supports polymorphism, especially through function overloading and virtual

functions, allowing multiple forms of functions or methods to exist.
7. Function Overloading

 C does not allow function overloading. Function names must be unique.
 C++ allows function and operator overloading, enabling the same function name to

be used for different types of arguments.
8. Abstraction

 C requires manual handling for abstraction using function pointers or separate
interfaces.

 C++ supports abstraction using abstract classes and interfaces, allowing complex
systems to be represented more simply.

9. Code Reusability
 In C, reusability depends on writing modular functions.
 In C++, classes and inheritance make it easier to reuse and extend code.

 SET - I

 www.blacksnwhite.com

10. Memory Management
 Both C and C++ use pointers and dynamic memory, but C++ offers advanced tools

like constructors, destructors, and smart pointers for better memory management.

Q.2) Define an inline function and explain its advantages.

Answer .:-
An inline function in C++ is a special type of function where the compiler replaces the
function call with the actual code of the function during compilation, rather than performing
a traditional function call at runtime.
It is declared using the keyword inline before the function definition. For example:
inline int square(int x) {
 return x * x;
}
When the above function is called in a program, the compiler may replace the call to
square(x) with x * x directly.

How Inline Functions Work:
Normally, when a function is called, the control jumps to the function's memory location,
executes the code, and then returns back. This process consumes time due to the overhead of
jumping back and forth.
An inline function avoids this jump by inserting the function code directly at the point of
the call, reducing function call overhead.

 Note: The inline keyword is a request to the compiler, not a command. The compiler may
choose to ignore it, especially for large or complex functions.

Advantages of Inline Functions:

1. Reduced Function Call Overhead:
o Since the function code is inserted directly at the call site, there is no need for

a jump to a different memory location.
o This speeds up execution, especially for small and frequently used functions.

2. Improved Performance for Small Functions:
o When simple functions (like arithmetic operations) are used repeatedly,

making them inline can result in faster execution.
3. Better Code Readability:

o Developers can write clean, reusable functions without worrying about
performance loss due to function calls.

4. Helps in Optimization:
o Inline functions may help the compiler perform further optimizations like

constant folding and loop unrolling during compilation.
5. Avoids Multiple Definition Errors:

o When inline functions are defined in header files and included in multiple
source files, it prevents "multiple definition" linker errors, because inline
functions have internal linkage by default.

Limitations

 Large or complex functions may not be inlined by the compiler.

 www.blacksnwhite.com

 Excessive use of inline functions can lead to code bloat, increasing the size of the
executable.

 Recursion and functions containing loops or static variables are usually not inlined.
Inline functions are useful for reducing the overhead of function calls and improving
performance for small, simple functions. While they offer several advantages, they should be
used wisely to avoid increasing the size of the compiled code. Ultimately, the decision to
inline is made by the compiler based on optimization strategies.

Q.3) Explain the concept of exception handling in C++ and its necessity.
Discuss the roles of try, throw, and catch in the exception handling
mechanism.

Answer .:-
Exception handling in C++ is a powerful mechanism used to detect and handle runtime
errors in a structured and safe way. Instead of terminating the program abruptly when an
error occurs, C++ allows us to catch the error, handle it gracefully, and continue the
execution or safely exit.
An exception is an event that occurs during program execution that disrupts the normal flow
of the program. It can be caused by issues like division by zero, invalid memory access, file
not found, etc.

Necessity of Exception Handling

1. Ensures Program Stability: Without exception handling, a program may crash
unexpectedly. Exceptions allow safe handling of errors without stopping the entire
application.

2. Separates Error-Handling Code: It separates normal code from error-handling code,
making programs cleaner and easier to maintain.

3. Improves Readability: By avoiding cluttered if-else checks, exception handling
improves code readability.

4. Allows Recovery from Errors: In certain cases, a program can recover from the
error and continue running.

Key Keywords in Exception Handling
C++ provides three main components for handling exceptions:
1. try block

 A try block contains code that might cause an exception.
 If an exception occurs within this block, it is thrown and caught by the corresponding

catch block.
try {
 // Code that may throw an exception
}
2. throw statement

 The throw keyword is used to signal (or "throw") an exception.
 It passes the control to the nearest matching catch block.

throw exception_type; // e.g., throw 10; or throw "Error!";
3. catch block

 The catch block handles the exception thrown by the try block.
 It specifies the type of exception it can handle.

catch (int e) {

 www.blacksnwhite.com

 cout << "Caught an exception: " << e << endl;
}

Example:
#include <iostream>
using namespace std;

int main() {
 int a = 10, b = 0;

 try {
 if (b == 0)
 throw "Division by zero error!";
 cout << "Result: " << a / b << endl;
 }
 catch (const char* msg) {
 cout << "Exception caught: " << msg << endl;
 }

 return 0;
}
Output:
Exception caught: Division by zero error!

Multiple catch Blocks
C++ allows multiple catch blocks to handle different types of exceptions:
try {
 // Code
}
catch (int e) { /* handle int */ }
catch (char c) { /* handle char */ }
catch (...) { /* handle any type */ }
Exception handling is essential in C++ to make programs more robust, reliable, and user-
friendly. The try, throw, and catch blocks work together to detect, report, and recover from
errors during runtime. By handling exceptions properly, developers can prevent program
crashes and manage errors in a structured manner.

 www.blacksnwhite.com

Q.4) Describe basic programming using streams in C++. Include the
process of creating, connecting, and disconnecting streams, and provide a
simple example program.

Answer .:-

Introduction to Streams in C++
In C++, streams are used to perform input and output operations. A stream is simply a flow
of data: either from an input device (like a keyboard or file) to the program, or from the
program to an output device (like the screen or a file).
C++ provides a set of stream classes in the <iostream> and <fstream> headers to handle
various I/O operations.

Types of Streams in C++

1. Input Stream – Used to read data (cin, ifstream)
2. Output Stream – Used to write data (cout, ofstream)
3. Input/Output Stream – Used for both reading and writing (fstream)

Steps in Stream Programming
1. Creating a Stream Object
You declare a stream object of a suitable class depending on the operation:

 ifstream for reading from a file
 ofstream for writing to a file
 fstream for both reading and writing

2. Connecting the Stream to a Source/Destination
Use .open() to associate the stream with a file.
3. Performing Read/Write Operations
Use << or >> operators (or stream functions) to perform I/O.
4. Disconnecting the Stream
Use .close() to close the file and disconnect the stream.

Example Program: Writing and Reading a File
#include <iostream>
#include <fstream> // Required for file streams
using namespace std;

int main() {
 ofstream outFile; // Step 1: Create output stream
 outFile.open("data.txt"); // Step 2: Connect to file

 if (!outFile) {
 cout << "Error creating file!" << endl;
 return 1;
 }

 // Step 3: Write data
 outFile << "Hello, this is a test file.\n";
 outFile << "C++ stream programming is simple!" << endl;

 SET - II

 www.blacksnwhite.com

 outFile.close(); // Step 4: Disconnect output stream

 // Step 1: Create input stream
 ifstream inFile("data.txt"); // Step 2: Connect directly via constructor

 if (!inFile) {
 cout << "Error opening file!" << endl;
 return 1;
 }

 // Step 3: Read and display content
 string line;
 while (getline(inFile, line)) {
 cout << line << endl;
 }

 inFile.close(); // Step 4: Disconnect input stream

 return 0;
}

Explanation of Example:

 ofstream outFile; creates a stream for writing.
 outFile.open("data.txt"); connects it to a file named data.txt.
 Data is written using the << operator.
 The file is closed using outFile.close();.
 Then ifstream inFile("data.txt"); reads the same file.
 getline(inFile, line); reads line-by-line.
 Finally, inFile.close(); disconnects the stream.

Conclusion:
Stream-based programming in C++ simplifies input and output operations. It abstracts the
source or destination of data (file, console, etc.) into stream objects. By creating, connecting,
using, and disconnecting streams properly, programmers can easily manage file I/O and build
efficient, organized programs.

Q.5)What are access specifiers in C++? Provide examples to demonstrate
the use of each access specifier in a class.

Answer .:-

Access specifiers in C++ define the scope (visibility) of class members (i.e., variables and
functions). They control how and where class members can be accessed from within or
outside the class.
There are three main access specifiers in C++:

1. public
2. private
3. protected

 www.blacksnwhite.com

1. public:

 Members declared under public can be accessed from anywhere, both inside and
outside the class.

 Used for interfaces that are meant to be accessible to all.
class MyClass {
public:
 int a; // public data member

 void show() { // public function
 cout << "Value of a: " << a << endl;
 }
};
Usage:
MyClass obj;
obj.a = 10;
obj.show();

2. private:

 Members declared as private can only be accessed within the class.
 They are not accessible from outside the class directly.
 Used to implement data hiding.

class MyClass {
private:
 int secret;

public:
 void setSecret(int s) {
 secret = s;
 }

 void showSecret() {
 cout << "Secret: " << secret << endl;
 }
};
Usage:
MyClass obj;
obj.setSecret(123);
obj.showSecret();
// obj.secret = 10; // ❌ Not allowed (private access)

3. protected:

 Members declared protected are accessible within the class and by derived classes
(through inheritance).

 Not accessible outside the class unless inherited.
class Base {
protected:
 int protectedValue;

public:

 www.blacksnwhite.com

 void setValue(int v) {
 protectedValue = v;
 }
};

class Derived : public Base {
public:
 void showValue() {
 cout << "Protected Value: " << protectedValue << endl;
 }
};
Usage:
Derived obj;
obj.setValue(42);
obj.showValue();
// obj.protectedValue = 10; // ❌ Not allowed (protected access)

Summary Table:
Access Specifier Access within class Access in derived class Access outside class
public ✅ Yes ✅ Yes ✅ Yes
private ✅ Yes ❌ No ❌ No
protected ✅ Yes ✅ Yes ❌ No

Conclusion:
Access specifiers in C++ help enforce data encapsulation and abstraction, which are core
principles of object-oriented programming. By using private, protected, and public
effectively, developers can build more secure and maintainable programs by controlling how
class members are accessed.

Q.6) Explain the concept of operator overloading in C++.

Answer .:-

Definition:
Operator overloading in C++ allows you to redefine the way operators work for user-
defined types (like classes and structures). It lets you use standard operators (+, -, *, =, <<,
etc.) to perform custom operations on objects, just like you do with built-in types.
In simple words, operator overloading means giving new meaning to an operator when it is
used with class objects.

Why Use Operator Overloading?

 Makes code more intuitive and readable
 Allows object-oriented behavior with common operators
 Enhances reusability of classes

Syntax:
Operator overloading is done using a special function called an operator function, declared
using the operator keyword:
return_type operator symbol (arguments)

 www.blacksnwhite.com

You can overload both unary and binary operators.

Example: Overloading the '+' Operator
Let’s say we want to add two complex numbers using +:
#include <iostream>
using namespace std;

class Complex {
 float real, imag;

public:
 Complex(float r = 0, float i = 0) {
 real = r;
 imag = i;
 }

 // Overload '+' operator
 Complex operator + (Complex obj) {
 Complex temp;
 temp.real = real + obj.real;
 temp.imag = imag + obj.imag;
 return temp;
 }

 void display() {
 cout << real << " + " << imag << "i" << endl;
 }
};

int main() {
 Complex c1(2.5, 3.5), c2(1.5, 4.5), c3;

 c3 = c1 + c2; // Using overloaded '+' operator

 cout << "Sum of complex numbers: ";
 c3.display();

 return 0;
}

Output:
Sum of complex numbers: 4 + 8i

Important Notes:

 Not all operators can be overloaded (e.g., ::, .*, ., sizeof).
 You cannot change the number of operands or operator precedence.
 Operator functions can be member functions or friend functions.

Commonly Overloaded Operators:

 Arithmetic: +, -, *, /

 www.blacksnwhite.com

 Assignment: =
 Comparison: ==, !=, <, >
 Stream: << and >> (usually as friend functions)

Conclusion:
Operator overloading in C++ allows you to use operators with user-defined types, making the
code cleaner and more natural. It helps achieve polymorphism, one of the core features of
object-oriented programming.

